Budai et al. polychromatic microdiffraction to epitaxial growth RABiTS

Relative CeO₂ orientation depends deposition temperature

High temperature growth:

Crystallographic tilt towards ⊥
Tilt increases monotonically with miscut

Low temperature growth:

Small, ~biased tilts

Microbeam enables combinatorial measurements on real samples

Budai JD, Yang WG, Tamura N, Chung JS, Tischler JZ, Larson BC, Ice GE, Park C, Norton DP **NATURE MATERIALS** 2 (7): 487-492 JUL 2003

Important questions remain

- Why does J_c decrease for thick samples?
- Why does mosaic on single Ni substrate grain differ

How grain boundary/polycrystal networks interact - a major materials opportunity 21st

century

- What are the constitutive equations at grain boundaries?
 - How do they change with boundary type
- What are ideal microstructures?
 - How do different networks evolve during processing and in service?
- How can grain boundary distributions be controlled?
 - Grain boundary engineering

Essential for nanophase and advanced layered materials

Unprecedented precision addresses longstanding issues/ tests CSL models

- CSL low-energy boundaries share lattice sites
 - Σ denotes inverse fraction of shared sites
 - Theory: misorientation increases as Σ decreases
- Measured misorientation increase with Σ
- Grain boundary normals
 - Ideal directions should have lower energy
 - Faceting may remove energy advantage

Morphology of Ni triple junction

Significant statistical information emerging

Total: 70

About 50% are CSLs, and 20% are found to be tilt, twist or having low-index in both grains.

No	Sigma type	Rotation Angle (degree)	Rotation angle off (degree)	Rotation Axis (RAX)	Rotation axis off (degree)	Boundary Normal (BN) in bi-crystal	Angle between RAX – BN (degree)	
B2	Σ21b	44.40	0.01	2, 1, 1	2.95	1.00, 0.32, 0.30 / 0.69, 1.00, 0.17	86.3	Tilt
В6	Σ47b	43.66	0.80	3, 2, 0	6.11	1.00, 0.07, 0.53 /1.00, 0.87, 0.31	74.6	Tilt
B10	Σ37c	50.57	0.14	1, 1, 1	4.55	0.08, 1.00, 0.26 /1.00, 0.12, 0.68	57.6	
B34	Σ1	(6.16°)				0.00, 1.00, 0.17 / 0.04, 0.27, 1.00	88.3	Tilt
A57	Σ3	60.00	0.01	1, 1, 1	0.02	1.00, 0.11, 0.02 / 0.32, 1.00, 0.87	86.4	Tilt
A314	Σ3	60.00	0.01	1, 1, 1	0.03	0.28, 0.31, 1.00 /0.36, 0.37, 1.00	2.4	Twist

0.9 **Deviations of misorientation** 8.0 angle & rotation axis 0.7 degree 0.6 0.5 0.4 0.3 0.2 0.1 0.0 **Σ5-25** Σ 27-49 Σ 3

Open questions:

- 1. Why and how are the deviations from ideal CSL model as Σ type increases?
- 2. Are there residual strains imposed near the deviated CSL boundaries?
- 3. Any difference of CSLs between near or below sample surface?

4.

Three Dimensional Morphology of Triple Junction

Polycrystalline grain structure can now be measured nondestructively in 3D-submicron resolution-meso scale

QuickTime™ and a Video decompressor are needed to see this picture.

Thermal Grain Growth in Hot-Rolled Aluminum

1 μm pixels, Boundaries: 5° & 20°

- GB motions include both high-angle and low-angle boundaries
- Complete and detailed 3D evolution needed for validation of theories.

Elastic strain key driving force-Monochromatic DAXM measures intra-

granular elast

- Local strain-even in single crystal
- Ultra-high precision local orientations
- Independent of grain orientation
- Phase sensitive

Revolutionizes ability to study materials

Nanoindent in single crystals provides major insights into 3D deformation/modeling

Indent

Probe Geometry

- Deformation boundary conditions completely known/ volume modelable
- Best models predict some features not others-highly reproducible
- Single, bi-crystal, or polycrystal
- Strain-gradient models directly testable

In-situ tensile deformation polycrystal finds

intra-granular variations

- Dramatic changes in deformations within single grain
 - Consistently large rotations near surface
- Plastic and elastic deformation measured
 - Essential information for understanding mechanisms
- Extensive sample characterization required for full boundary conditions

To achieve potential and meet emerging demand - new microbeam lines and hardware proposed

Multiplexed 3D polychromatic diffraction-center for mesoscale research-

- -BM
- -Operated by APS
- -Greater general user access

Spatial resolution 50nm→10nm

Accelerated 3D characterization 100-1000x

- Multiple wire/coded aperture
- Faster detectors (GE detectors)

Summary: - important emerging technique

 Cannot meet demand with existing facilities

 Addresses long-standing issues with fundamentally new approach

Wide applicability

Team of ORNL scientists involved

• Gene Ice- Co-principle investigator, x-ray optics

- Bennett Larson- Co-principle investigator-3D deformation/nanoindentation
- John Budai-Epitaxial films and 3D grain growth
- Jonathan Tischler-Mesoscale measurements and computer analysis (CMSD APS Site)
- Wenge Yang-Mesoscale deformation using nanoindentation (Guest Scientist- APS Site)
- Wenjun Liu-Grain boundary networks (Post Doc-APS Site)
- Judy Pang-in-situ 3D polycrystalline deformation

Important support from APS-differentially deposited elliptical mirrors and beam stabilization

